Direction of the reactivity of vanillyl-alcohol oxidase with 4-alkylphenols.
نویسندگان
چکیده
The covalent flavoprotein vanillyl-alcohol oxidase (VAO) predominantly converts short-chain 4-alkylphenols, like 4-ethylphenol, to (R)-1-(4'-hydroxyphenyl)alcohols and medium-chain 4-alkylphenols, like 4-butylphenol, to 1-(4'-hydroxyphenyl)alkenes. Crystallographic studies have indicated that the active site residue Asp170 is involved in determining the efficiency of substrate hydroxylation. To test this hypothesis, we have addressed the reactivity of Asp170 variants with 4-alkylphenols. The substrate preference of Asp170Glu was similar to wild type VAO. However, Asp170Ser was most active with branched-chain 4-alkylphenols. The hydroxylation efficiency of the Asp170 variants was dependent on the bulkiness of the newly introduced side chain. The Glu170 mutation favored the production of alkenes, whereas the Ser170 mutation stimulated the formation of alcohols.
منابع مشابه
Regio- and stereospecific conversion of 4-alkylphenols by the covalent flavoprotein vanillyl-alcohol oxidase.
The regio- and stereospecific conversion of prochiral 4-alkylphenols by the covalent flavoprotein vanillyl-alcohol oxidase was investigated. The enzyme was active, with 4-alkylphenols bearing aliphatic side chains of up to seven carbon atoms. Optimal catalytic efficiency occurred with 4-ethylphenol and 4-n-propylphenols. These short-chain 4-alkylphenols are stereoselectively hydroxylated to the...
متن کاملEnigmatic Gratuitous Induction of the Covalent Flavoprotein Vanillyl-Alcohol Oxidase in Penicillium simplicissimum.
When Penicillium simplicissimum is grown on veratryl alcohol, anisyl alcohol, or 4-(methoxymethyl)phenol, an intracellular covalent flavin-containing vanillyl-alcohol oxidase is induced. The induction is highest (up to 5% of total protein) during the growth phase. In addition to vanillyl-alcohol oxidase, an intracellular catalase-peroxidase is induced. Induction of vanillyl-alcohol oxidase in P...
متن کاملRationally engineered flavin-dependent oxidase reveals steric control of dioxygen reduction.
UNLABELLED The ability of flavoenzymes to reduce dioxygen varies greatly, and is controlled by the protein environment, which may cause either a rapid reaction (oxidases) or a sluggish reaction (dehydrogenases). Previously, a 'gatekeeper' amino acid residue was identified that controls the reactivity to dioxygen in proteins from the vanillyl alcohol oxidase superfamily of flavoenzymes. We have ...
متن کاملMercuration of vanillyl-alcohol oxidase from Penicillium simplicissimum generates inactive dimers.
Vanillyl-alcohol oxidase (EC 1.1.3.7) from Penicillium simplicissimum was modified with p-mercuribenzoate. One cysteine residue reacts rapidly without loss of enzyme activity. Three sulfhydryl groups then react in an 'all or none process' involving enzyme inactivation and dissociation of the octamer into dimers. The inactivation reaction is slowed down in the presence of the competitive inhibit...
متن کاملBiocatalytic Properties and Structural Analysis of Eugenol Oxidase from Rhodococcus jostii RHA1: A Versatile Oxidative Biocatalyst
Eugenol oxidase (EUGO) from Rhodococcus jostii RHA1 had previously been shown to convert only a limited set of phenolic compounds. In this study, we have explored the biocatalytic potential of this flavoprotein oxidase, resulting in a broadened substrate scope and a deeper insight into its structural properties. In addition to the oxidation of vanillyl alcohol and the hydroxylation of eugenol, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- FEBS letters
دوره 481 2 شماره
صفحات -
تاریخ انتشار 2000